Code: EC5T4

III B.Tech - I Semester – Regular Examinations - November 2015

ANTENNA AND WAVE PROPAGATION (ELECTRONICS & COMMUNICATION ENGINEERING)

Duration: 3 hours

Max. Marks: 70

Answer any FIVE questions. All questions carry equal marks

- a) Define Beam efficiency, Antenna efficiency, Directivity, and Beam area.
 - b) Explain the radiation mechanism. 7 M
- 2. a) Prove that the radiation resistance of half wave dipole is 73Ω .
 - b) Explain basic principle of small circular loop antenna.

6 M

- 3. a) Derive the array factor of N-element uniform linear array.

 6 M
 - b) Find the Null-o-Null beam width of end fire array when array length is 10λ and N=20.
 - c) Write short notes on Binomial arrays.

 4 M

4.	a) Design a rhombic antenna to operate at f= 30MHz with	
	an elevation angle $\Delta=30^{\circ}$.	6 M
	b) Write about helical antenna in axial and normal mode.	
		8 M
5.	a) Explain about spill over radiation and aperture block	king. 7 M
	b) Derive input impedance of 2 element folded dipole.	7 M
6.	a) Find the power gain and directivity of a horn whose	
	dimensions are 10 x 5 cm operating at a Frequency of 6GHz.	4 M
	b) Explain the concept of zoning.	4 M
	c) Draw and explain about gain measurement method.	6 M
7.	a) Explain atmospheric effects in space wave and sky wa	ve
	Propagation.	8 M
	b) Define the critical frequency and skip distance.	6 M
8.	a) Explain about duct propagation and draw M-H curves.	•
		7 M
	b) What is a radio horizon? Derive the expression for rad	
	horizon. Page 2 of 2	7 M